Benutzerdefinierte Literale: Übersetzungszeit oder Laufzeit?

Durch Überladen des so genannten Literaloperators operator"" lassen sich neue Formate für benutzerdefinierte Literale definieren. Diese setzen sich aus einem Standard-Literal und einem benutzerdefinierten Suffix zusammen. Damit kann man in einem C++–Programm beispielsweise schreiben:

100.5_kg
0xFF00FF_rgb
10010101_b

Wie sich benutzerdefinierte Literale in Ihrem Programm definieren lassen und welche Stolperfallen Sie dabei beachten sollten, können Sie in dieser Fallstudie nachlesen.

[Read More]
Cpp_17 

Being constexpr or not being constexpr: Konstante Ausdrücke in C++

Die Berechnung von Ausdrücken zur Übersetzungszeit wurde in C++–17 auf ein neues Niveau angehoben. Längst haben wir es nicht mehr mit nur konstanten Literalen oder einfachen Ausdrücken, bestehend aus einer Summation oder Multiplikation, zu tun. In C++–17 können zur Übersetzungszeit Variablen, Funktionen und auch ganze Klassen bzw. deren Objekte mit entsprechenden Konstruktoren zur Übersetzungszeit ausgeführt bzw. erzeugt werden.

Von Interesse ist dieser Aspekt in der Anwendung zum Beispiel für die Embedded Programmierung, wenn es darum geht, möglichst viele Daten vom Übersetzer berechnen zu lassen, um diese mit Hilfe des Kompilats in das ROM (Read-Only-Memory) einer speziellen Hardware zu packen.

Welche Möglichkeiten sich mit constexpr in C++ 17 eröffnen, zeigen wir an einer Reihe von Fallbeispielen in dieser Studie auf.

[Read More]
Cpp_17 

Spiegelzahlen – auch Palindrome genannt

Eine natürliche Zahl, die identisch ist mit ihrer Kehrzahl wie z.B. 131, wird Palindrom genannt. In dieser Fallstudie betrachten wir eine nicht deterministische Methode zur Berechnung beliebig großer Palindrome.

Die in C++ eingebauten elementaren Datentypen (wie int oder long) stellen keine echte Hilfe dar, wenn wir potentiell unendlich große Palindrome berechnen wollen. Zu diesem Zweck entwerfen wir im Folgenden zunächst eine Klasse Number, mit deren Hilfe sich sehr große Zahlen darstellen lassen. Im Anschluss daran gehen wir auf die Klasse PalindromCalculator ein, um Palindrome zu berechnen.

[Read More]

Exakte Arithmetik ganzer Zahlen

Die ganzzahligen Standarddatentypen in C++ wie short, int usw. besitzen allesamt die Eigenschaft, dass ihr Wertebereich limitiert ist. Für viele Anwendungen ist dies nicht nachteilig, da sich speziell mit den Datentypen int und long oder auch size_t ziemlich große Zahlen darstellen lassen. Für manche Anwendungen ist die Verarbeitung von ganzen Zahlen beliebiger Größe jedoch unabdingbar. Wir stellen im Folgenden eine Klasse BigInteger vor, die eine exakte Arithmetik vorzeichenbehafteter ganzer Zahlen beliebiger Größe zur Verfügung stellt.

[Read More]

Das Springerproblem

Das Springerproblem ist auf den Schweizer Mathematiker Leonhard Euler (1707 – 1783) zurückzuführen. Dieser stellte sich vor über 200 Jahren, genauer gesagt im Jahre 1758, die folgende Frage: “Gegeben sei ein leeres Schachbrett. Gibt es eine Zugfolge, mit der der Springer alle (schwarzen und weißen) Felder des Bretts genau einmal besucht?”.

Hmmm, eine gute Frage, wird sich der geneigte Leser jetzt sagen. Möglicherweise kann man sie innerhalb von wenigen Minuten selbst beantworten, schließlich ist ein Schachbrett mit seinen 8×8 Feldern nicht so wirklich groß. Stellt man nach einer ersten Phase euphorischen Suchens ernüchternd fest, dass das Problem doch nicht ganz so einfach zu lösen ist, kommt man vielleicht auf den revolutionären Gedanken, dem Problem mit Hilfe eines Softwareprogramms auf den Leib zu rücken. Dies ist natürlich möglich, wie wir in dieser Fallstudie am Beispiel von Modern C++ zeigen werden.

Neben der Implementierung einer Backtracking-Strategie betrachten wir auch Überlegungen, wie sich das Suchen von Zugfolgen parallelisieren lässt. Die Methode std::async und Objekte, die es “erst in der Zukunft” gibt (std::future<T>), kommen zum Einsatz.

[Read More]